Extraction of copper (II) ions from oxidized ore in the presence of an ethylenediaminetetraacetic acid solution in a basic environment

Authors

DOI:

https://doi.org/10.35622/j.ti.2023.04.003

Keywords:

chelating agent, EDTA, leaching, solubility

Abstract

An experiment was conducted to obtain copper (II) ions in a basic environment using ethylenediaminetetraacetic acid (EDTA) and oxidized copper minerals from Cerro Azoguini in Puno, Peru. Specific objectives included investigating the solubility of Cu2+ ions in a mineral with high silica, limestone, and iron content, as well as studying the influence of pH, EDTA concentration, and extraction time. 1.5 grams of ground mineral at -100 mesh (150 µm), with 80% pass and 6% solids, were leached with a 0.5 M NaHCO3 solution at different pH levels and EDTA concentrations. The results indicated the extraction of 3.5 g/L of Cu2+ ions at pH 10 with 0.12 M EDTA, without agitation, at room temperature (19°C), over a period of 83 hours. It was observed that the NaHCO3 solution extracted copper from the mineral, and EDTA quickly chelated it, forming ionic complexes such as CuHEDTA ∧ (1−), CuHEDTA ∧ (2−) and Cu0HEDTA ∧ (3−). Other metals present in the gangue were not chelated by EDTA, demonstrating its high selectivity based on solubility constants and precipitation formation at different pH levels. Additionally, high copper extraction rates were obtained at a pH of 13.15, possibly due to decreased protons and increased  ions from both the reagent and leached mineral. In conclusion, the physicochemical analyses revealed the feasibility of obtaining Cu2+ ions by solubilizing oxidized minerals, followed by rapid chelation with EDTA to form diverse metal complexes depending on the pH of the medium.

References

Bauer, D. J., & Lindstrom, R. E. (1971). Use of chelating agents for recovery of copper from carbonate and silicate ores. JOM, 23(5), 31–33. https://doi.org/10.1007/BF03355700 DOI: https://doi.org/10.1007/BF03355700

Bingöl, D., & Canbazoǧlu, M. (2004). Dissolution kinetics of malachite in sulphuric acid. Hydrometallurgy, 72(1–2), 159–165. https://doi.org/10.1016/j.hydromet.2003.10.002 DOI: https://doi.org/10.1016/j.hydromet.2003.10.002

Cruz-Guzmán, M. (2007). La contaminación de suelos y aguas. Su prevención con nuevas sustancias naturales. Secretariado de publicaciones de la Universidad de Sevilla. Universidad de Sevilla.

Duda, L. L., & Bartecki, A. (1982). Dissolution of Cu2S in aqueous edta solutions containing oxygen. Hydrometallurgy, 8(4), 341–354. https://doi.org/10.1016/0304-386X(82)90060-3 DOI: https://doi.org/10.1016/0304-386X(82)90060-3

Ferrero, M. E. (2016). Rationale for the Successful Management of EDTA Chelation Therapy in Human Burden by Toxic Metals. In BioMed Research International. https://doi.org/10.1155/2016/8274504 DOI: https://doi.org/10.1155/2016/8274504

Flaschka, H., & Butcher, J. (1964). Photometric titrations—IX1DTPA titration of zinc in presence of cadmium and other metals. Talanta, 11(7), 1067–1071. https://doi.org/10.1016/0039-9140(64)80149-1 DOI: https://doi.org/10.1016/0039-9140(64)80149-1

Fuerstenau, D. W., Herrera-Urbina, R., & McGlashan, D. W. (2000). Studies on the applicability of chelating agents as universal collectors for copper minerals. International Journal of Mineral Processing, 58(1–4), 15–33. https://doi.org/10.1016/S0301-7516(99)00058-7 DOI: https://doi.org/10.1016/S0301-7516(99)00058-7

Goto, T., Zaccaron, S., Hettegger, H., Bischof, R. H., Fackler, K., Potthast, A., & Rosenau, T. (2023). Evaluating chelating agents and their effects on cellulosic pulps during P-stage bleaching. Part 1: analytical method development. Cellulose, 30(6), 3887–3900. https://doi.org/10.1007/s10570-023-05110-1 DOI: https://doi.org/10.1007/s10570-023-05110-1

Han, M., He, J., Wei, X., Li, S., Zhang, C., Zhang, H., Sun, W., & Yue, T. (2022). Deep purification of copper from Cu(II)-EDTA acidic wastewater by Fe(III) replacement/diethyldithiocarbamate precipitation. Chemosphere, 300(January). https://doi.org/10.1016/j.chemosphere.2022.134546 DOI: https://doi.org/10.1016/j.chemosphere.2022.134546

Harris, D. C. (2018). Análisis químico cuantitativo. Reverté.

Konishi, Y., Katoh, M., & Asai, S. (1991). Leaching kinetics of copper from natural chalcocite in alkaline Na4EDTA solutions. Metallurgical Transactions B. https://doi.org/10.1007/BF02651228 DOI: https://doi.org/10.1007/BF02651228

Konishi, Y., Katoh, M., & Asai, S. (1994). Leaching of Copper from Natural Covellite in Alkaline Na4EDTA Solutions. Materials Transactions, JIM, 35(10), 695–698. https://doi.org/10.2320/matertrans1989.35.695 DOI: https://doi.org/10.2320/matertrans1989.35.695

Marafi, M., & Rana, M. S. (2019). Role of EDTA on metal removal from refinery waste catalysts. WIT Transactions on Ecology and the Environment. https://doi.org/10.2495/WM180131 DOI: https://doi.org/10.2495/WM180131

Mitchell, P. C. H. (1997). Metal complexes of EDTA: An exercise in data interpretation. Journal of Chemical Education. https://doi.org/10.1021/ed074p1235 DOI: https://doi.org/10.1021/ed074p1235

Mohammadi, E., Pourabdoli, M., Ghobeiti-Hasab, M., & Heidarpour, A. (2017). Ammoniacal thiosulfate leaching of refractory oxide gold ore. International Journal of Mineral Processing, 164, 6–10. https://doi.org/10.1016/j.minpro.2017.05.003 DOI: https://doi.org/10.1016/j.minpro.2017.05.003

Nörtemann, B. (1999). Biodegradation of EDTA. In Applied Microbiology and Biotechnology (Vol. 51, Issue 6, pp. 751–759). https://doi.org/10.1007/s002530051458 DOI: https://doi.org/10.1007/s002530051458

Pociecha, M., & Lestan, D. (2009). EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2008.10.006 DOI: https://doi.org/10.1016/j.jhazmat.2008.10.006

Redmore, F. H., López, L. G. de, & López, L. A. (1988). Fundamentos de química. Prentice-Hall Hispanoamericana.

Ringbom A. (1977). Formación de complejos en química analítica. Alhambra

Seuntjens, P., Nowack, B., & Schulin, R. (2003). Modelling leaching and root uptake of heavy metals in the presence of organic ligands. Bioavailability of Soil Pollutants and Risk Assessment.

Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2005). Fundamentos de química analítica. Thomson-Paraninfo.

Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2015). Fundamentos de química analítica. Cengage Learning Editores.

Smith, J., & Martell, A. (1977). Critical Solubilite Constans. Plenum.

Sun, Z. H. I., Xiao, Y., Sietsma, J., Agterhuis, H., Visser, G., & Yang, Y. (2015). Selective copper recovery from complex mixtures of end-of-life electronic products with ammonia-based solution. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2014.12.013 DOI: https://doi.org/10.1016/j.hydromet.2014.12.013

Tamura, H., Ito, N., Kitano, M., & Takasaki, S. (2001). A kinetic model of the dissolution of copper(II) oxide in EDTA solutions considering the coupling of metal and oxide ion transfer. Corrosion Science. https://doi.org/10.1016/S0010-938X(00)00171-2 DOI: https://doi.org/10.1016/S0010-938X(00)00171-2

Tomásek, J., & Neumann, L. (1982). Dissolution of secondary copper sulphides using complex-forming agents (EDTA, EDA). Part I: Covellite dissolution in EDTA and EDA. International Journal of Mineral Processing. https://doi.org/10.1016/0301-7516(82)90004-7 DOI: https://doi.org/10.1016/0301-7516(82)90004-7

Wang, Q., Li, Y., Liu, Y., Ren, J., Zhang, Y., Qu, G., & Wang, T. (2021). Effective removal of the heavy metal-organic complex Cu-EDTA from water by catalytic persulfate oxidation: Performance and mechanisms. Journal of Cleaner Production, 314(June), 128119. https://doi.org/10.1016/j.jclepro.2021.128119 DOI: https://doi.org/10.1016/j.jclepro.2021.128119

Wu, S., An, Y., Lu, J., Yu, Q., & He, Z. (2022). EDTA-Na2 as a recoverable draw solute for water extraction in forward osmosis. Environmental Research, 205(November 2021), 112521. https://doi.org/10.1016/j.envres.2021.112521 DOI: https://doi.org/10.1016/j.envres.2021.112521

Published

2023-12-30

Issue

Section

Artículos originales

How to Cite

Carpio, D., Sueros, F., & Venturo, L. (2023). Extraction of copper (II) ions from oxidized ore in the presence of an ethylenediaminetetraacetic acid solution in a basic environment. Technological Innovations Journal, 2(4), 33-49. https://doi.org/10.35622/j.ti.2023.04.003

Most read articles by the same author(s)